Inertial-aided Rolling Shutter Relative Pose Estimation

نویسندگان

  • Chang-Ryeol Lee
  • Kuk-Jin Yoon
چکیده

Relative pose estimation is a fundamental problem in computer vision and it has been studied for conventional global shutter cameras for decades. However, recently, a rolling shutter camera has been widely used due to its low cost imaging capability and, since the rolling shutter camera captures the image line-by-line, the relative pose estimation of a rolling shutter camera is more difficult than that of a global shutter camera. In this paper, we propose to exploit inertial measurements (gravity and angular velocity) for the rolling shutter relative pose estimation problem. The inertial measurements provide information about the partial relative rotation between two views (cameras) and the instantaneous motion that causes the rolling shutter distortion. Based on this information, we simplify the rolling shutter relative pose estimation problem and propose effective methods to solve it. Unlike the previous methods, which require 44 (linear) or 17 (nonlinear) points with the uniform rolling shutter camera model, the proposed methods require at most 9 or 11 points to estimate the relative pose between the rolling shutter cameras. Experimental results on synthetic data and the public PennCOSYVIO dataset show that the proposed methods outperform the existing methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vision-aided inertial navigation with rolling-shutter cameras

In this paper, we focus on the problem of pose estimation using measurements from an inertial measurement unit and a rolling-shutter (RS) camera. The challenges posed by RS image capture are typically addressed by using approximate, low-dimensional representations of the camera motion. However, when the motion contains significant accelerations (common in small-scale systems) these representati...

متن کامل

Efficient Visual-Inertial Navigation using a Rolling-Shutter Camera with Inaccurate Timestamps

In order to develop Vision-aided Inertial Navigation Systems (VINS) on mobile devices, such as cell phones and tablets, one needs to consider two important issues, both due to the commercial-grade underlying hardware: (i) The unknown and varying time offset between the camera and IMU clocks (ii) The rolling-shutter effect caused by CMOS sensors. Without appropriately modelling their effect and ...

متن کامل

Simultaneous Object Pose and Velocity Computation Using a Single View from a Rolling Shutter Camera

An original concept for computing instantaneous 3D pose and 3D velocity of fast moving objects using a single view is proposed, implemented and validated. It takes advantage of the image deformations induced by rolling shutter in CMOS image sensors. First of all, after analysing the rolling shutter phenomenon, we introduce an original model of the image formation when using such a camera, based...

متن کامل

Spline Fusion: A continuous-time representation for visual-inertial fusion with application to rolling shutter cameras

In this paper, we describe a method for performing SLAM and visualinertial calibration robustly using inexpensive sensors such as rolling shutter CMOS cameras and MEMS IMUs. We make use of a continuous-time model for the trajectory of the camera that naturally allows us to fuse information from many unsynchronized and potentially high-rate sensors whilst limiting state size. We model the rollin...

متن کامل

Global Optimization of Object Pose and Motion from a Single Rolling Shutter Image with Automatic 2D-3D Matching

Low cost CMOS cameras can have an acquisition mode called rolling shutter which sequentially exposes the scan-lines. When a single object moves with respect to the camera, this creates image distortions. Assuming 2D-3D correspondences known, previous work showed that the object pose and kinematics can be estimated from a single rolling shutter image. This was achieved using a suboptimal initial...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1712.00184  شماره 

صفحات  -

تاریخ انتشار 2017